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Abstract

Cross-language code-clones refer to code fragments written in different programming lan-
guages but shares some level of similarity in their structure or functionality. In this work, we
propose to build a cross-language code-clone detection model based on graph neural network
(GNN). Detecting cross-language code-clones in different programming languages is vital for
tasks like version control and bug fixing for cross-platform applications, but it remains a problem
due to the difference in syntax between different programming languages. Consequently, many
recent works have turned to compare the abstract syntax tree (AST) for structural similarity
between code fragments. In our work, we introduced the popular graph neural network (GNN)
model which is capable of extracting structural information from graphs, in order to efficiently ex-
tract information from the tree structure of an AST. However, existing cross-language code-clone
datasets are not suitable for training our model, thus we proposed to train it with an especially
designed sequence prediction task with modified dataset. Though we did not reach the state of
the art performance, we proved the potential of GNN model for the cross-language code-clone
detection task.
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Chapter 1

Introduction

Code-clones refer to code fragments that share some level of similarity in their functionalities.
With the explosive growth of code lines, such repeativeness of code becomes further unavoidable
in software developing. code-clones can be caused by many programming behaviours. Intuitively,
copying and pasting from other projects produce code-clones that are totally identical. Besides,
re-implementing an existing functionality unconsciously or on purpose will lead to functionally
similar code-clones. To better study the influence of code-clones with different level of similar-
ity, previous study [1] briefly classified all code-clones into 4 types. While Type I to Type III
clones include code pairs with a decreasing syntactical similarity, Type IV clones mostly refers
to functionally similar code pairs that are quite different on code text.

Detecting code-clones is a necessary task for software development and maintenance. Copying
and pasting contributes the most to Type I and Type II code-clones. It’s a great boost to
efficiency to discover those clones when we want to apply the same updating or bug fixing to
all the copies. On the other hand, unconscious re-implementation potentially leads to Type III
and IV clones. And according to [2], such clones working in the same project are highly possible
of causing runtime errors. code-clone detection is also essential in many other tasks, such as
selecting library candidate with similar utility or interface [3], aiding program comprehension by
clustering code fragments according to functionality [4, 5], and detecting malicious software by
their code behaviour [6], etc.

Important as it is, code-clone detection has been a long studied topic. Previous works have
reached promising performance on detecting Type I and II clones. Due to the similarity in syntax
between Type I and Type II clones, they can be efficiently detected by directly comparing the
text of source code. On the other hand, Type III and Type IV clones share much less syntactical
similarity, thus they are difficult to be detected by comparing source code. To this end, many
related works have turned to compare the structural similarity to detect the similarity in code
function of Type III and Type IV clones.

AST based code-clone detection Among many code structure representations, abstract
syntax tree (AST) has been preferred in many code-clone detection studies. AST is a tree
representation of the abstract syntactic structure of source code written in programming language.
By ”abstracting” the ”syntax”, ASTs ignore most of the text level details while preserving the
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structure of the source code. Thus it is a common case where different code fragment may share
roughly similar ASTs. By parsing code fragments into corresponding ASTs, code-clone detection
is transferred into a tree comparison task. To compare the similarity of ASTs, some previous
work applied algorithmic approach [7], while some others introduced deep learning methods to
extract code information into vector representations [8].

1.1 Cross-language code-clone detection

In this work, we focus on a more specific group of Type IV code-clones, cross-language code-clones.
While it is natural to find similar code lines in one programming language, it is also common case
that the same functionality is implemented in different programming languages. For example,
PyTorch is a well known and widely used open source machine learning library written in Python,
but it also provides C++ and Java APIs. The implementation of the same interface provided for
different programming language may look quite different on the code, but can be considered as
code-clones due to their identical functionality. Besides, building the same deep learning model
with PyTorch in different programming language would also result in cross-language code-clones.

The basic difference on syntax between programming languages makes cross-language code-
clones even more difficult to be detected than monolingual Type IV clones. Again, researchers
turn to abstracting code fragments into ASTs in order to avoid the syntactical difference between
programming languages. However, on the one hand, recent studies haven’t reached an agreement
on how to efficiently compare ASTs. Algorithm ways require much manual work and professional
knowledge on the programming language to make comparison rules. Deep learning based method
face difficulty in the tree structure of ASTs, since conventional neural network models can only
take linear inputs. On the other hand, the basic structure of ASTs from different programming
languages are also different. In order to detect cross-language code-clone detection, we have
to either remove such differences by manual modification, or to extract functionality similarity
while resisting the interfere of the structural difference. In a word, there is still much space of
improvement for cross-language code-clone detection.

1.2 Graph neural network based code-clone detection

Based on our study, we believe that a recent popular topic, the graph neural network (GNN)
model, is a potential solution to the problems we addressed. GNN is a class of efficient graph em-
bedding models. A typical GNN collects neighborhood information by message passing between
nodes, and can further generate an embedding to represent the entire graph by aggregating from
all nodes. By processing ASTs with a GNN model, we expect information about local code func-
tionality to be collected in node embeddings, and summarize local functionalities into a general
code embedding.

In this work, we intend to build a GNN based code embedding generator, which maps code
fragments into a latent space. To achieve the target of code-clone detection, we expect the model
to generate close vector representations for similar code fragments. Then for an arbitrary pair
of code fragments, we can feed the code into our model, and compare the distance between
generated code embeddings as a similarity score of the corresponding code fragments.
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Though it is a very straightforward model design, it needs careful considering on how to train
the model for generating such meaningful embedding. To the best of our knowledge, all existing
deep learning based code-clone detection models are trained with typical code-clone datasets.
In such a dataset, each pair of code fragments are simply labeled as clone or not, without any
further information. However, the real relationship of similarity between code fragments is very
complicated in high dimension. To this end, we propose to train this code embedding model with
labels that contain more information.

We propose to train this model with a code to natural language prediction task, resulting in a
Graph to Sequence model. We intend to dig code information from such natural language labels
and train the GNN encoder to extract such information into code embeddings. From another
perspective, our model takes the similarity between natural language labels as similarity scores
of corresponding code fragments, and train the code-clone detection model with more detailed
code-clone labels. Another reason for taking natural language sequence as training target is
that most code fragments are naturally paired with some sort of document, thus code to natural
language dataset is easy to acquire.

To better exploit the information buried in the natural language labels, we utilize the strong
power of recurrent neural network (RNN). In our model, the RNN decoder takes the code embed-
ding generated by GNN encoder as input to predict the target sequence. The code embedding
can be considered to contain sufficient information of code label if the model manages to predict
the target sequence.

1.3 Contributions

We conclude the contributions of our work as follows:

Introducing GNN into cross-language code-clone detection GNN has been widely used
in many deep learning tasks that deal with graph structured inputs. Recently, we are also
seeing a few attempts on analyzing code structures (e.g. AST, control flow graph (CFG)) with
GNN models. One of the best attempts has successfully applied GNN to monolingual code-
clone detection task and reached fairly high performance. However, to the best of our knowledge,
none have successfully implemented a model for extraction of comparable information from cross-
language code-clone code fragments. Thus in this work, we put our efforts on building a GNN
based model that is capable of analyzing code fragments from different programming languages.
Specifically, we focus on the task of cross-language code-clone detection. Though there remains
much limitation on the utility and performance of our work, we argue that our work is an
acceptable first step, and GNN has great potential on dealing with cross-language code tasks.

Slightly improving cross-language code-clone detection performance Our final target
of building a GNN based code encoder is to detect cross-language code-clones. Though we
did not manage to solve the problem perfectly with our proposed model, we observed a slight
improvement on the performance compared to a recent work. The precision is improved from
19% to 30.2% using our graph-to-sequence-based code embedding model. On the other hand,
unlike other works that embed ASTs from different languages into different latent spaces, and
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requires another neural network, we managed to map cross-language ASTs into one single space,
approximately according to their code structures.

Dataset generation As previously mentioned, we believe it’s not the best choice to train a
code-clone detection model with a typical code-clone dataset. In search of a better solution, we
focused on a variety of code-to-sequence datasets. However, a natural code-to-sequence dataset
contains sequence labels of different styles, and the focus of the labels may be on different per-
spective of the corresponding code. Thus it is too noisy for a code-clone detection model to
capture the relationship between code fragments and their corresponding labels. To this end, we
put our efforts on manually modifying the training dataset. We believe our model works better
trained with the modified dataset, and this dataset would potentially help train other similar
models.

1.4 Organization

Here we briefly introduce the contents of the rest of this thesis. In chapter 2, we will discuss
about cross-language code-clone detection and existing works in detail, which is the background
and motivation of this work. Then we present the overview of our proposed model, and go
through every notable detail of our model structure in chapter 3. We will also explain how we
build a code-to-sequence model for cross-language code-clone detection. Chapter 4 will cover the
evaluation detail of our model. We compare the performance of our model with different model
settings and other works from many perspectives. Finally in chapter 5, we summarize our work,
discuss about our contributions and remaining problems, then finish with a future plan.



Chapter 2

Graph neural network based code
embedding

The major target of this work is to build a graph neural network (GNN) based code encoder
which is capable of generating meaningful embedding for an input code fragment. Such code
embedding is expected to contain sufficient information about the corresponding code fragment,
and can be utilized by many related downstream tasks. While in this work, we focus on utilizing
the code embedding for cross-language code-clone detection task.

2.1 Background

Code-clones Code-clone detection is a long discussed topic. The general purpose of code-clone
detection is to build a model for recognizing similar code fragment pairs from given dataset.
To further evaluate the different levels of similarity between code fragments, previous work [1]
categorized code-clones into the following four types:

Type I: Identical code fragments except for variations in white space (may be also variations
in layout) and comments.

Type II: Structurally/syntactically identical fragments except for variations in identifiers, lit-
erals, types, layout and comments.

Type III: Copied fragments with further modifications. Statements can be changed, added or
removed in addition to variations in identifiers, literals, types, layout and comments.

Type IV: Two or more code fragments that perform the same computation but implemented
through different syntactic variants.

Code-clone detection has been proved necessary by previous study [2]. The example code
fragments shown in Figure 2.1 and Figure 2.2 can be classified as Type III clones. Though they
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def twoSum(self, nums, target):
map = {}
for i in range(len(nums)):
x = nums [i]
if target-x in map:
return [mapl[target-x], il

N OO W N

map [x] = i

Figure 2.1. Two sum in Python

def countOccurrence(self, nums):
map = {}
for i in range(len(nums)):
x = nums[i]
if x not in map:
map [x] = 1
map [x] += 1

N OO R WN

Figure 2.2. Count Occurrence in Python

are implemented for totally different functionalities, they share much similarity in source code
text. Detecting such clones has been thoroughly studied with promising results.

2.1.1 Monolingual code-clone detection

Syntactical code-clone detection The basic problem of code-clone detection is detecting
code-clones written in same programming language. For Type I and Type II clones, we can simply
tokenize the text of source code and compare the resulted sequence, since they are at most different
in a few variable and type tokens. It gets a little tricky to detect Type III clones. Since adding/
removing of statements is included, a more complicated rule for token sequence comparison is
needed in order to detect Type III clones in a syntactical way. As an example, CCFinder [9] follows
a tokenize-transform-compare working flow for detecting syntactically different code-clones. The
transform step modifies the token sequence according to pre-defined rules so that minor difference
would be neglected.

1 x=20
2 pass
3 print(x)

1 x=0
2 print(x)

Figure 2.3. Code example A Figure 2.4. Code example B
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X = 0 \n print ( X ) \EOF

X = 0 \npass \n print ( x ) \EOF

Figure 2.5. Tokenized result

Figure 2.6. Tree structure of code frag- Figure 2.7. Tree structure of code frag-
ment A ment B

Building a transformation rule requires professional knowledge to the target programming
language as well as heavy manual work. Figure 2.3-2.5 presents a typical example of such difficulty.
Thought the code fragments shown in Figure 2.3 and Figure 2.4 are apparently code-clones, their
tokenized sequences become totally unpaired on the second half, because of the insertion of
a single ‘pass’ statement. However, such difference is much less influential on the structural
representation of a code fragment. As shown in Figure 2.6 and Figure 2.7, the inserted ‘pass’
statement only resulted in a new child of the ‘block’ node, without any influence on the rest of
the code structure representation.

Tree-based code-clone detection Many recent works have turned to compare the code struc-
ture for detection of Type III and Type IV code-clones. Among them, abstract syntax tree (AST)
is a widely used code structure representation. AST is a tree representation of the abstract syn-
tactic structure of source code written in programming language. By ‘abstracting’ the ‘syntax’,
ASTs ignore most of the text level details while preserving the structure of the source code. Con-
sequently, the code-clone detection task is converted into a tree comparison problem. A typical
example is provided by Lawton et al. [7]. In their work, they built a tree comparison model,
which linearize the tree in a depth-first-search order, and apply SmithWaterman algorithm on
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the resulted node sequences for a similarity score.

Another work from Jiang et al. [10] applied a more special approach for tree comparison.
Instead of directly designing tree comparison rules, the authors built a series of models that maps
sub-tree in the AST into a multidimensional real number vector, which is also referred to as a
feature vector. Then they further generate a feature vector for the corresponding code fragment
according to sub-tree feature vectors. As a result of such processes, their model compresses
the information of an entire AST into a single feature vector. Finally, code-clones are detected
by clustering feature vectors. This is probably one of the earliest attempts on code embedding
generation.

The idea of embedding became popular in deep learning area due to the invention of Word2vec
algorithm. Generating an embedding for an object means building a model that extracts sufficient
information from the object and represent the information with a multidimensional real number
vector. Such method has been applied to the task of code-clone detection by Wang et al. [11]. In
this work, instead of manually designing mapping functions, the authors applied a special deep
learning model which is known as Graph Neural Network (GNN) to learn the embedding for code
fragments automatically. We will talk about GNN with more detail in Section 2.2.2.

2.1.2 Cross-language code-clone detection

With the fast development of a variety of programming languages, the significance of efficiently
detecting cross-language code-clones has also been stressed. As shown in Figure 2.8, this Java
code fragment is an exact re-implementation of Python code in Figure 2.1. Though being exactly
same in functionality and code structure, they still look quite different by text, due to the
natural divergence in the syntax of different programming languages. Therefore, cross-language
code-clones are mostly classified as Type IV clones.

Basically, each of the monolingual code-clone detection methods mentioned above could be
generalized to the cross-language task with some modification. But because of the major different

1 public class Two_Sum {

2 public int[] twoSum(int[] nums, int target) {

3 Map<Integer, Integer> map = new HashMap<>();
4 for (int i = 0; i < nums.length; i++) {

5 int x = nums[i];

6 if (map.containsKey(target - x)) {

7 return new int[]J{map.get(target - x), il};
8 }

9 map.put(x, i);

10 }

11 }

12}

Figure 2.8. Two Sum in Java
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of syntax between different programming languages, it becomes difficult to detect cross-language
code-clones with syntactical approaches. Thus, many recent works have turn to comparing code
structure representation, such as AST, for cross-language code-clone detection. It is worth men-
tioning that many of them applied deep learning method for automatic modeling in order to
reduce manual work.

Daniel et al. [8] applied a typical deep-learning based code embedding approach for cross-
language code-clone detection. They first collected a rather large amount of code fragments
from public projects. Then they parsed all the code fragments into ASTs, and collected the
neighboring node pairs in all the ASTs as context, to form a node ‘corpus’ On such ‘corpus’,
a skip-gram algorithm [12] is applied to generate an embedding for each of the nodes. Given a
code-clone dataset, an arbitrary code fragment is again parsed into an AST, then linearized to
a node sequence in depth-first-search order. The node sequence is then fed into a bi-directional
LSTM followed by a fully-connected neural network, to generate an embedding corresponding to
the input code fragment. Finally, the code similarity is computed by the code embeddings.

2.1.3 AST based code embedding

Actually, code embedding is an independent topic which is also being widely studied. A well
trained code embedding model would also perform well in code-clone detection tasks, since the
embeddings should represent sufficient information from the corresponding code fragment, in-
cluding structure and functionality. Our insight is to generalize code embedding models for
cross-language task.

[13] is a recent study on AST based code embedding. In this work, Uri et al. propose a
AST-path based AST context representation. To be specific, they extracted AST paths from an
AST as local structure representations, then represent the structural information of the entire
code fragment with a weighted combination of AST paths.

AST path An AST path is the route of AST nodes between a pair of terminal nodes, with the
terminal nodes as the head and tail of the route respectively. A terminal node in AST refers to a
leaf node of the tree structure, oppositely a non-terminal node refers to the root nodes of sub-trees
with more than one nodes. Specifically, an AST path is composed of a pair of terminal nodes and
a sequence of non-terminal nodes between them. From an AST with n terminal nodes, O(n?)
different AST paths can be extracted. The authors further inserted 1 and | symbols between
non-terminal nodes to denoted the parent-child relationships. An typical example is shown in
Figure 2.9.

Next, an attention model is trained for learning the importance of each different AST path,
The attention model is a universal model which computes an importance score of an AST path
according to its representation. Then the computed importance scores of all AST paths would
be normalized as follows:

eprZ-
oy = <
! Z]explj

where I; refers to the importance of an AST path ¢, and the exponents in the equation are
used to make the attention weights positive. Such normalization works as a standard softmax
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Figure 2.9. Examples of AST paths [13]. Specifically, the AST (D colored in red is extracted
as < elements, (Name 1 FieldAccess T Foreach | Block | IfStmt | Block |
Return | BooleanExpr), true >

function. Finally a weighted average is computed over the AST paths to generate the code
embedding.

2.2 Motivation

In this work, we also intend to follow the deep learning based code embedding generation ap-
proach, for the target of cross-language code-clone detection task. That is, we aim to build a code
embedding model that is capable of extracting functionality information from code fragments,
and the code embeddings for similar code fragments should be close even for cross-language code
pairs. Here we stress the major problem that limits the performance of previous models on the
task of cross-language code-clone detection.

2.2.1 AST processing problem

Intuitively, most deep learning based tasks rely on the strong modeling power of Deep Neural
Network (DNN). However, conventional DNNs can only take a vector representation as input. An
advanced variant of DNN, the Recurrent Neural Network (RNN), can further take a sequence of
vector representation as input. Neither of them is capable of directly processing the tree structure
of an AST. Thus in previous tree based code embedding works, the nodes in ASTs are either
directly merged into one vector, or linearized into a sequence, in order to be processed by a DNN
or RNN. Such methods break the potential hierarchical information hidden in the tree structure.
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Take the code embedding model from [13] as an example. As introduced, [13] extracts AST
paths from an AST as a component of the final code representation. While generating the final
code embedding, only information of AST path itself is considered, but the relationships between
different AST paths and the hierarchical positions of the AST paths in the AST are ignored. For
a concrete example, two identical AST paths appearing in different hierarchical level of the code
share identical representation, and thus are assigned with totally same importance.

2.2.2 Graph-Neural-Network-based code encoder

In this work, we intend to address the problem of processing an AST by introducing a recent
popular class of model, the Graph Neural Network.

Graph Neural Network Basically, GNN works as a node embedding generation model, spe-
cially designed to deal with graph structures. It works with a message passing mechanism. Given
an arbitrary graph, first each of the nodes is assigned with an initial embedding according to
their feature or randomly. Then in the message passing stage, the model computes a message
representation for each node and each of its neighbors. The model updates the embedding of
each node with the computed message representation. Such message passing process is repeated
for several epochs until the embeddings reach a stable equilibrium.

1. Sample neighborhood 2. Aggregate feature information 3. Predict graph context and label
from neighbors using aggregated information

Figure 2.10. An example of a typical message passing process of GNN [14]

Further, the final node embeddings can be aggregated by a read-out function to generate
the vector representation of the entire graph. With such read-out function, a GNN is extended
to a graph embedding generator. Typically, the read-out function proposed by [15] consist of a
fully-connected neural network that extracts information from each of the node embeddings, and
an attention mechanism which learns to decide how much each of the node embeddings should
contribute to the final graph embedding.

GNN for monolingual code-clone detection Wang et al. [11] is the first to introduce
GNN models to the task of monolingual code-clone detection. In order to achieve the target of
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vector space similarity vector space similarity

=

graph vectors

propagations

Figure 2.11. Model comparison of a typical GNN (left) and GMN (left) [16]

) _ Readout . Cosine
Code Fragment Parser AST gﬂdmg FA-AST Graph Function Graph Embedding Similari
::> £> Matching \:D \:WD Clone Label
Code Fragment AST FA-AST Network Graph Embedding

Figure 2.12. Overview of GMN based code-clone detection model [11]

code-clone detection, the authors implemented one of the variants of GNN, the Graph Matching
Network (GMN) [16]. Unlike a typical GNN model that processes one single graph at a time,
the GMN model possesses a Siamese structure that processes a pair of graph at the same time.
Further more, a GMN model is implemented with a pair-wise attention. During the message
passing stage, for each node in the pair of graphs, the pair-wise attention computes a similarity
of the node to each of the nodes in the other graph, and aggregates the node embeddings into
from the other graph into a context vector according to their similarity score. Such context
vector is computed for each of the nodes in the pair of graphs, and is used for updating the node
embeddings. By such design, the model is sensitive to detailed differences while capturing major
similarities between graphs. Therefore, the GMN model is very suitable for comparing ASTs.

IfStatement WhileStatement ForStatement
_— T T o
Condition  ==+==-- » ThenStatement ElseStatement Condition T > Body | e ForRxes. ...
., CondTrue A B e ForControl ..........covunre. Body

K ForNext

CondFalse

Figure 2.13. Example of modified ASTs [11]
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Figure 2.12 shows the overview of the GMN based code-clone detection model. Since it’s a
straightforward idea to apply the GMN model to the monolingual code-clone detection task, the
authors focused their effort on modifying the ASTs by adding control-flow edges and data-flow
edges to improve the performance of their model, as shown in Figure 2.13.

Representing ASTs from different languages As proven by Wang et al., GNN models have
great potential in extracting information from ASTs for code-clone detection tasks. However, a
GNN model generates graph embedding by aggregating from node embeddings, which means the
distribution of graph embedding greatly depends on the distribution of node embeddings. In the
case of code embedding, it is to say that code embedding generated by a GNN model depends on
node type embeddings of the ASTs. Different from the monolingual case, the ASTs comes from
different programming languages in the cross-language code-clone detection task, and naturally
do not share the same set of node types. Consequently, the distribution of node embeddings
for different programming languages is different. Further, the code fragments are embedded
separately, thus can’t be directly used for code-clone detection. This is the major obstacle for
generalizing a GNN based code embedding model to cross-language tasks.

2.3 Training problem

To the best of our knowledge, all code-clone detection models are trained with typical code-clone
datasets. We refer to a typical code-clone dataset as a collection of code fragments (monolingual
or cross-language), where each pair of code fragments is labeled as ‘clone’ or ‘not clone’ according
to their similarity. However, code similarity relationships should be far more complicated than a
binary label. For a simple example, as shown in Figure 2.14, if Listing funcA and Listing funcB
are labeled as clone, Listing funcB and Listing funcC are labeled as clone, should Listing func
and Listing funcC also be labeled as clone? In such case, a binary ‘clone’ or ‘not clone’ label is
not sufficient for expressing the relationship between funcA and funcB. Such case is universal in
all existing code-clone datasets, making them confusing for a deep learning model to capture the
hidden similarity relationship. To this end, we intend to train the code embedding model with a

Listing 2.1. Listing 2.2. Listing 2.3.
1 def funcA(Q): 1 def funcB(Q): 1 def funcCQ):
2 if condition_1: 2 if condition_1: 2
3 action_1 3 action_1 3
4 if condition_2: 4 if condition_2: 4 if condition_2:
5 action_2 5 action_2 5 action_2
6 6 if condition_3: 6 if condition_3:
7 7 action_3 7 action_ 3
8 return 8 return 8 return

Figure 2.14. An example for problematic clone labeling
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more expressive label.
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Chapter 3

Graph-to-sequence model for
cross-language code-clone detection

In this section, we present our code embedding based cross-language code-clone detection model.
Generally, we implement a GNN based code embedding model to generate code embeddings.
We introduced embedding pre-training to deal with the cross-language issue, and optimized the
training problem by training with natural language sequence labels. Consequently, we result in a
graph-to-sequence model for generating code embeddings, and we aim to improve the performance
of cross-language code-clone detection with the generated code embeddings.

t \ TN
| Graph Code !
— —_ [—
: embedding A :
| ﬂ 1
I {} |
| |
I i ! Target
[ — Graph Isomorphism . 1 RNN ~
I Network (GIN) Programing ! decoder sequence
: fragment language A (GRU)
N o e e e e e e e e e e e e e e e e e e /

I \
| 1
Graph Code I
| —_— —_— —
1 embedding B :
: |
. ~ .
| 1
: Graph Isomorphism :
|
1

e — H
Code Network (GIN) Programing !
fragment languageB ,

Figure 3.1. Overview of graph-to-sequence model

Model overview Here we present the overview of our implemented model, as shown in Figure
3.1. Intuitively, we follow an encoder-decoder structure to achieve the code to sequence prediction
target. To be specific, we first parse the input code fragment into an AST which the model
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encodes into an embedding, then the decoder takes the embedding and tries to generate the
target sequence. For the encoder part, the GNN model first computes an embedding for each
node in the AST by message passing, thus the embedding contains the information of the node
itself and its neighbors within a certain distance. After that a readout function is applied to
aggregate the node embedding into a code embedding. In training phase, this graph embedding
is expected to contain sufficient information of the source code, so that the RNN decoder with
Gate Recurrent Unit (GRU) can predict the target natural language sequence from it. We further
implemented attention mechanism, which allows the GRU to take information from the entire
input AST, to improve the sequence prediction performance. After training , in the inferring
stage, we the model stops at the code embedding, and we can compute a similarity score of a
pair of code fragments by computing the distance between their code embeddings.

3.1 Embedding pre-training

ASTs are heterogeneous graphs, which means each node in the graph has individual features,
unlike homogeneous graphs where all nodes can be regarded as same. In order to be processed
by a GNN model, the node feature of each node type has to be represented as a node embedding.
In common deep learning tasks utilizing GNN, the initial node embeddings are usually assigned
randomly, obeying certain distribution (e.g. normal distribution). However, as we mentioned, the
generated graph embedding greatly depends on the distribution of node embeddings. In cross-
language code-clone detection task, the model has to deal with two groups ASTs who don’t share
any node types. Our target for the code embedding model is to capture the structure similarity in
ASTs from different programming language, and such difference in node types greatly influences
the generated representation from the GNN model. In other words, the model represents the same
structure information differently since they are captured from different programming languages.

The most straightforward idea for dealing with such problem is manually clustering similar
node types from different programming languages, as Lawton et al. [7] did in their work. The
problem is, on the one hand, manually clustering node types requires high level of professional
knowledge on both programming language, and is very time consuming. We would like to reduce

MemberR eference MemberReference

Figure 3.2. AST of Java statement ‘a=b;’

Figure 3.3. AST of Python statement
‘a:b7
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MemberR eference MethodInvocation

Figure 3.4. AST of Java statement
La:b();7

Figure 3.5. AST of Python statement
La:b()7

such manual work with deep learning based methods. On the other hand, due to the different
modeling of ASTs from different programming languages, some times a node type can not be
easily clustered.

As the examples shown in Figure 3.2 and Figure 3.3, these are the AST of the same statement
‘a=Db’ written in Java and Python. While Python distinguishes the variable on different side of
the assignment operator by the ‘Store’ and ‘Load’ nodes, Java AST ignores such difference and
represents both variables with ‘MemberReference’ node. And in Figure 3.4 and Figure 3.5, when
we replaced the variable ‘b’ with a method invocation ‘b()’, Java AST replaced ‘MemberReference’
node with a ‘MethodInvocation’ node, while Python simple inserted a new ‘Call’ node to represent
such difference. In a word, it requires heavy human work to model all those differences between
cross-language ASTs, yet still resulting in sub-optimal results.

DeepWalk To address the cross-language node embedding problem, we introduce another
model in GNN family, the DeepWalk model [17]. The DeepWalk model is a novel unsupervised
approach for learning latent representations of vertices in a network. The latent representations
generated by DeepWalk model encode social relations in a continuous vector space, which is easily
exploited by statistical models.

For a given graph G = (V, E), the DeepWalk model first assigns an initial embedding for each
of the nodes as a typical GNN model does. Then, the model samples a random walk R from the
given graph. A random walk R of length [ is sampled as follows: starting from an arbitrary node
v; € V, the model selects the next node v; randomly from its neighbors N;, and selects a further
next node vy, from the neighbors of v;, until the selected route reaches the target length I. After
that, the model processes the sampled random walk R with a skip-gram model [12], regarding
the random walk as a special ‘sentence’. By such design, a graph structure is treated as a huge
corpus of sentences composed of nodes from the graphs, and a semantic information is extracted
for each node according to its neighboring relationships with other nodes.
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Figure 3.6. A graphic example of DeepWalk model capturing social relationship from a given
graph

Then a key problem arises. DeepWalk is originally designed for generating node embeddings
for a single homogeneous graph, while our dataset contains multiple heterogeneous graphs (ASTs
generated from different code fragments). And our idea is simple, we merge all the ASTs in our
dataset into one single graph.

Applying DeepWalk on ASTs Intuitively, a homogeneous graph can also be viewed as a
heterogeneous graph where all nodes in the graph are different and independent. Thus for a
large dataset of ASTs, we can generate a single homogeneous graph by merging all nodes of the
same type into one single node, while preserving all edges between nodes. A brief example is
shown below. Figure 3.7 and Figure 3.8 represent two independent ASTs, and they are merged
into the graph in Figure 3.9 according to the rule mentioned above. Similarly, all ASTs from the
dataset are merged into one general graph, which contains all existing node types uniquely, and
the neighboring relationships between them. Actually, when the AST dataset is large enough,
such general graph contains all possible parent-child relationships allowed by the grammar of the
AST, thus we name it as the grammar graph. On the other hand, such grammar graph can
also be acquired by re-constructing AST grammar into a graph, other than extracted from a huge
AST dataset.

Picking a random walk from the resulted grammar graph is approximately equivalent to
extracting random walk from the collection of independent ASTs. Thus we believe applying
DeepWalk model on the grammar graph would generate meaningful embeddings for nodes that
represent a universal semantics of the node for an AST. For example, a ‘For’ node and a ‘While’
node would be assigned with similar embedding because they share the same set of neighbors.
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FunctionDef
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FunctionDef
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Figure 3.9. Example

Figure 3.8. Example merged
Figure 3.7. Example AST-2 graph
AST-1

Crossing language boundary Above we explained how we applied the DeepWalk model to
generate node embeddings for nodes in ASTs from the same language. The idea for generalizing
the embedding model to cross-language tasks, is to utilize the social relation encoding ability
of DeepWalk. Intuitively, given an arbitrary graph, the nodes that share similar neighbors will
be assigned with similar embeddings. Therefore, we take some special common nodes from
different languages as anchors, for example the binary operator nodes like ‘+’ and ‘-’ that have
no ambiguity. We merge the grammar graph of two different languages by merging those anchor
nodes. Then during processing of the DeepWalk model, the direct neighbor of those anchor
nodes, e.g. ‘BinOp’ node in Python AST and ‘BinaryOperation’ node in Java, would have similar
embeddings because they share the anchor nodes as common neighbors. And such similarity will
spread across the merged grammar graph.

By such design, we managed to generate similar node embeddings for AST in different lan-
guages, while greatly reducing manual work. But there is a trade off in efficiency and accuracy
whenF setting the anchor nodes. The more anchor nodes we set, the more ambiguity we face
when merging the nodes, thus more time and professional knowledge is required, but more sim-
ilar embeddings will be generated for close node types. On the other hand, if we only set very
few anchor nodes, the similarity information may fail to spread across the graph. In this work,

BmaryOperation BmOp

Do
Gt CFCI DT T

Figure 3.10. In the merged grammar graph, ‘BinaryOperation’ node from Java and ‘BinOp’ node
from Python would have similar embedding, because they share many common
neighbors; further, ‘MemberReference’ node from Java would also share similarity
with ‘Name’ node from Python, because they share similar neighbors.
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we simply set those nodes without ambiguity as anchor nodes without deep consideration, since
we do not observe significant influence of anchor node numbers to the cross-language code-clone
detection performance.

3.2 Graph Neural Network encoder

The key component for generating a code embedding is the GNN based AST encoder, which
extracts information from the structure of an AST into a vector representation.

A typical GNN model works as follows. A given graph input is represented as G = (V, E),
where V = {v;|i € {1,2,---,k}} and E = {(v;,vj)]i,5 € {1,2,---,k} Aw;,v; is linked} denotes
the set of nodes and edges in the graph respectively, k& = |V is the total number of nodes
in G. Before the processing starts, the GNN model first assigns each node v; € V with an
initial embedding h?, so that they can be fed into a neural network. The initial embedding is
assigned randomly or according to a embedding dictionary D. Next the model moves to the
message passing stage. In this stage, for each node v; € V, the model computes a message
representation with v; and its neighbor v; € N; as message; ; = 6(v;.v;). N; = {v;|(vi,v;) € E}
denotes the set v;’s neighbors, and § denotes the message function. With the messages from v;’s
neighbors and the embedding of v; itself, the model then updates the vector representation of
v; as hg“ = gb(hﬁ,aggr({messageiﬂw € N;})). Here, ¢ refers to an updating function, aggr
is a aggregation method that collects message from v;’s neighbors, and ¢ denotes the number of
current message passing stage. This message passing stage is repeated several times until each
node representation collects enough information from a certain range of its neighbors. Finally in
the output stage, a graph embedding is computed as g = 9(h;1|i € {1,2,---,k}), where 0 is a
pre-defined read-out function that aggregates information from the entire graph, and h;” ! denotes
the final vector representation of node v;.

Along the entire working flow of a GNN model, there are several key parts requiring further
discussion: the message function §, the updating function ¢, the neighbor aggregation method
aggr, and the read-out function 8. Basically, we follow the model structure of Graph Isomorphism
Network, which claims to be the most expressive GNN model.

3.2.1 Graph Isomorphism Network

In [18], the authors proved that the upper bound of the expression ability for a GNN model
is equal to an algorithm called Weisfeiler-Lehman test (WL test) [19]. In other words, a GNN
model is at most as powerful as the Weisfeiler-Lehman test in distinguishing graph structures.

Weisfeiler-Lehman test The graph isomorphism problem asks whether two graphs are topo-
logically identical. This is a challenging problem: no polynomial-time algorithm is known for
it yet. The Weisfeiler-Lehman test of graph isomorphism is an effective and computationally
efficient test that distinguishes a broad class of graphs. Its 1-dimensional form, “naive vertex
refinement”, is analogous to neighbor aggregation in GNNs. The Weisfeiler-Lehman test itera-
tively (1) aggregates the labels of nodes and their neighborhoods, and (2) hashes the aggregated
labels into unique new labels. The algorithm decides that two graphs are non-isomorphic if at
some iteration the labels of the nodes between the two graphs differ.
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Figure 3.11. An overview of GIN’s theoretical framework. Middle panel: rooted subtree struc-
tures (at the blue node) that the WL test uses to distinguish different graphs. Right
panel: if a GNN’s aggregation function captures the full multiset of node neighbors,
the GNN can capture the rooted subtrees in a recursive manner and be as powerful
as the WL test. [18]

For a GNN model, being as powerful as the Weisfeiler-Lehman test means being able to embed
any different graphs into different embeddings, so that different graphs can be distinguished by
their embeddings, i.e. the GNN model is injective. Based on their mathematical analysis, the
following conclusion is reached:

A GNN model maps any graphs Gy and Gy 2 that the Weisfeiler-Lehman test of isomorphism
decides as non-isomorphic, to different embeddings if the following conditions hold:

1. The updating function ¢ and the neighbor aggregation method aggr are injective.

2. The graph level read-out function 6 which operates on the node features is injective.

To be more specific, GIN models the updating function and the neighbor aggregation method
¢ o aggr together with one Multi-Layer Perceptron (MLP), because MLPs can represent the
composition of functions. Thus each iteration of the message passing stage works as

¢ tpt—1 t—1
hi = MLP*(h;”" + Z h; )
vjENi

note that the MLP for each message passing iteration is modeled independently.
For the graph level read-out function, GIN implemented as

which concatenated the summation of all node embeddings of each message passing iteration.
While in our work, we replaced the read-out function with the one proposed in [15]

k
g= tcmh(z sigmoid(M LP,(h;)) ® tanh(M LP(h;)))
i=1
This read-out function introduced an attention mechanism by replacing the sum of node embed-
dings with a weighted sum, where the weight is learned by the M LP,, linear neural network.
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Besides, this read-out function only focuses on the final state of node embeddings in order to
reduce computation cost. And on the other hand, paying attention to each of the iterations does
not significantly improve the performance.

3.3 Recurrent Neural Network decoder

Now we have acquired a powerful GNN based model for code embedding generation. The follow-
ing question is how to train the embedding model so that it generates meaningful embeddings,
especially for the task of code-clone detection. As we discussed in Section 2.3, binary clone la-
bels are not suitable for training a code-embedding based code-clone detector, for the similarity
relationships between code fragments are far more complicated.

In this work, we intend to exploit code similarity potentially buried in other labels, specifically,
natural language sequence corresponding to the code fragment. On the one hand, dataset that
assigns code fragments with meaningful and closely related natural language sequence is universal.
On the other hand, based on promising natural language processing techniques, it’s possible to
dig discrete similarity labels from the natural language labels. To be more specific, we train
a model to predict the corresponding sequence from a code fragment, thus teaching the model
to dig information from code. Therefore, we propose train our model with a graph (AST) to
sequence task. To be specific, we feed the code embedding generated by the GNN encoder into a
Recurrent Neural Network (RNN) decoder to generate a meaningful natural language sequence.

3.3.1 Recurrent Neural Network

Recurrent Neural Network (RNN) is a class of artificial neural networks that specializes in dealing
with sequences, A typical Deep Neural Network model consists of multiple hidden layers, where
the output of a previous layer is fed to the next layer as input. However, each RNN model
possesses only one hidden layer. During the forward propagation stage of an RNN model, the
output of its hidden layer, which is also referred to as RNN’s hidden state, is fed back again into
the hidden layer, together with the next input from the sequence.
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Figure 3.12. Typical RNN model
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Figure 3.13. Structure overview of a LSTM model [20]

R hidden_ state!™' = hidden_ layer(input®, hidden__ state®)

In this way, the only single layer of an RNN model is re-used ‘recurrently’. Unlike typical
DNNs that can only aggregate all information from a sequence with out any order, the RNN
model takes in the input sequence tokens one at a time, thus the output of each time step
contains the ordered information from all previous inputs. Figure 3.12 presents the structure of
a typical RNN model. A denotes the hidden layer of RNN, zq,x1, - -, x4 are the tokens of the
input sequence, i.e. the input of RNN in each time step. The real output h of each time step
and the hidden__state used for the next step can be same or different, according to the detailed
structure of the hidden layer.

Though the general structure of an RNN model is simple, the detailed structure of the only
hidden layer has been carefully studied with many different designs. A well known example is the
LSTM, as shown in figure 3.13. A the hidden layer of an LSTM model contains many gate units
that control the data flow of the input data and the previous hidden state. Such gate units are
designed for better dealing with memorizing long sequences and solving the problem of gradient
exploding and vanishing gradient during training.

In our work, we implement a light-weight version of LSTM, the GRU model, as the hidden
layer of our RNN model. Given the previous hidden state h!~! and the new input z?, the GRU
first passes them through a reset gate r to compute a reset parameter

r = sigmoid( MLP(h'™1, zt))

Then the previous hidden state H'~! is weighted by the reset parameter 7, and used to compute
a temporary new hidden state A’ with the new input z!

B = tanh(MLP(r ® ht=1, zt))
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Figure 3.14. Structure overview of GRU hidden layer [21]

Meanwhile, A*~! and x'~! is passed through a forget gate to compute a forget parameter z
z = sigmoid(MLP(h!™1, 2%))

The forget parameter z is used to leverage how much the previous hidden state h*~! and the
temporary new hidden state h?"™¢ should contribute to the final new hidden state h’

W=1-2)0h+z0N

Finally, the new hidden state k! is used as both the output of the current time step and the input
hidden state of the next time step.

The gate units helps the GRU model to deal with previous information differently according to
the new input, thus it’s more powerful in dealing with long sequences than RNN that simply uses
a fully-connected neural network as hidden layer. Compared to the LSTM design, GRU uses one
less gate unit than LSTM, thus consuming less computation power, while reaches approximately
same level of performance as LSTM.

3.3.2 RNN decoder

In this work, we build an RNN decoder using GRU as hidden unit, and we refer to the RNN
decoder as ‘RNN decoder’ in the following of this thesis. When working as an encoder, an RNN
model takes a blank vector (usually zero vector) as input of the first time step, i.e. a blank initial
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hidden state. Then while taking in the tokens of the input sequence one by one, the hidden state
gradually stores information of previous tokens, and finally becomes a vector representation of
the entire sequence. Oppositely, an RNN decoder takes in a initial hidden state that represents
the entire target sequence, and tries to predict the tokens of the target sequence during each time
step. Thus in our work, we use the code embedding generated from the GNN encoder as the
initial hidden state of the RNN decoder, and train the entire graph to sequence model by asking
the RNN decoder to predict the target sequence. We train the model with a cross entropy loss
by computing the difference of the predicted token and the target token.

3.3.3 Attention

However, power of RNN learning semantic knowledge from sequences is too strong, while the
information provided by the code embedding is limited. Consequently, the RNN decoder gets
over-fitted within very few training epochs, and predicts target sequence mainly based on the
semantic regularities it captured from the sequence dataset. In such case, the graph to sequence
prediction model actually degenerates into a graph to word prediction model, where only the first
word is predicted according to the input graph, while the rest of the sequence is irrelevant to the
graph embedding.

Attention mechanism The attention mechanism [22] is a widely used technique in natural
language processing, which enables the RNN decoder to utilize the information from input in
every time step of target sequence prediction. To be specific, the vector representations of input
elements are weighted-summed into a context vector, and fed into the hidden layer to help
predict the next output, where the weights of input elements is computed by the attention model

according to the previous hidden state.

Graph-wise attention Though attention mechanism is originally used in sequence to sequence
tasks, its idea can be easily generalized to our graph to sequence model. Here we introduce the

Code ~ GRU ~ GRU ~ GRU ~
fartention fattenn’on
A A
Node : | j

embeddings

Figure 3.15. Graph-wise attention
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graph-wise attention mechanism, which enables the RNN decoder to utilize information from
the input AST during prediction of each target word. A brief overview is shown in Figure 3.15.
During the prediction time step ¢, given the previous hidden state h!~! and node embeddings
v; € V from the input graph, an importance score of each node is computed by the attention

model as
wi™t = MLP(h™ Yo,

which works as a correlation function. The importance scores are normalized by a standard
softmax function into the weight of each node embedding

_ ep(w)
Zj exp(w;)

Then the node embeddings are weighted summed into a context vector

ettt = Z o4
v, €V
Finally, the context vector is used to aid the prediction
ht, hidden_ state! = GRU (hidden__state!™!, ctz!™!, input?)
We implement the attention mechanism for two major reason:

o By forcing the model to utilize more information from node embeddings, the contribution
of RNN hidden layer to the prediction task is reduced, thus more information is learned
and stored by the code embedding.

e Though RNN possesses strong power on dealing with sequence data, it becomes difficult
to predict a long sentence only with the hint of an initial hidden state. By utilizing the
information from AST in every prediction step, the RNN can generate sequence that is
more related to the input code fragment.
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Evaluation

In this section, We present all the results from our experiments to qualitatively support our
contribution. First of all, we discuss about the modifications we made on the dataset, followed
by some detailed model settings. Next we display the performance of our model on our final
target, the cross-language code-clone detection task, and compare it to a recent work. Then, we
show some observed results as evidence of the effectiveness of our model.

Data preprocessing The original dataset contains 342 Python files and 104 Java files, each
named with its corresponding programming contest question. Since the target of our model is to
detect cross-language code-clones, we first removed the unpaired code files from both language, so
that for any programming contest question, both answers written in Python and Java exist in the
dataset. Next, for the rest of the data, we found many of them contains multiple implementation
with different algorithms hidden in code comments. We extract those extra implementations
and named them with the corresponding question. Besides, we noticed some implementation for
the same question does not utilize same algorithm, we modified the python code to make sure
they utilize similar algorithm or remove the question-answer pair if modification is not possible.
Finally, we modify the question names so that the name better represents the corresponding code
fragment (e.g. add code detail to the name of code fragments that implement the same question
with different algorithms).
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Listing 4.1. Original python code fragment

1 while 11 or 12:

2 val = carry

3 if 11:

4 val += 1l1.val
5 11 = 11.next
6 if 12:

7 val += 12.val
8 12 = 12.next
9 curr.next = ListNode(val % 10)
10 curr = curr.next
11 carry = val / 10

Listing 4.2. Original Java code fragment

1 while (p != null || g!= null) {

2 int x = (p !'= null) ? p.val : 0;
3 int y = (q != null) ? q.val : 0;
4 int digit = carry + x + y;

5 carry = digit / 10;
6
7
8
9

curr.next = new ListNode(digit % 10);
curr = curr.next;

if (p !'= null) p p-next;
if (q != null) q = q.next;

Listing 4.3. Modified Python code fragment

1 while 11!=None or 12!=None:

2 x = 1ll.val if 11!'=None else O
3 y = 12.val if 12!=None else O
4 digit = carry+x+y

) curr.next=ListNode(digit’%10)
6 curr=curr.next

7 if 11!'=None:

8 11=11.next

9 if 12!=None:

10 12=12.next

Listing 4.1 - 4.3 is an example of our modification on the dataset. Python code fragment
Listing 4.1 and Java code fragment Listing 4.2 are the origin code fragments in the dataset
labeled as cross-language code-clone. They are implemented for the same LeetCode question
and they achieve same functionality regardless of the difference in their code structure. In a
monolingual code-clone detection task, the similarity in such different code pairs should be learnt
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by the detector. But in our case, we are facing a cross-language task, our model is not strong
enough to capture such divergence. Besides, the hint of such difference is not included in their
labels, i.e. the LeetCode question. Thus we modified the Python code to share same structure
with the Java code, to reduce the learning difficulty for our model.

The resulted dataset contains 114 code pairs from Python and Java. Each code fragment in
the dataset is labeled with its corresponding programming contest question, which is also used
as its file name. Each pair of code fragments from different programming languages is labeled
as cross-language clones, while any other pairs are labeled as not clones. We utilize both labels
during the evaluation of our model.

Model settings Apart from node embedding for input ASTs and word embedding used in se-
quence prediction, all parameters in our model are initialized with the default setting of PyTorch.
Node embeddings are generated with DeepWalk model, we download the code from their github
repository and used the default setting. The dimension of node embedding is set to 400. For the
RNN decoder, we set the dimension of hidden state to 500, which means the code embedding
generated from GNN encoder should also have 500 dimensions. We use the word embedding from
Python package pytorch-pretrained-bert. The times of message passing in the GNN encoder is
set to 10. We optimize the model with Adam optimizer, with weightdecay = 5e—4. The learning
rate is set to le — 4, decayed by a factor of 0.9 every 50 epochs.

4.1 Cross-language code-clone detection

Graph-to-sequence model performance Though it is not our final target to correctly pre-
dict the question name for a LeetCode answer, we still observe and evaluated the performance
of our graph-to-sequence model. As shown in Figure 4.1, the loss of the model continuously de-
creases during training, approaching 0. The prediction precision of target sequence reaches 100%
when loss reaches about 0.01. However, no correct prediction on the testing dataset is observed
during the training stage, which indicates severe over-fitting. This is mostly because our dataset
is too small, while the regularity hidden in the target sequences is too complicated, the model
gets over-fitted before it captures the semantic pattern from the target sequence set. Thus we
conclude this model is unsuccessful on the graph-to-sequence prediction task.
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Figure 4.1. Loss curve for during training

Listing 4.4. ‘Find anagram mappings’

1
2
3
4
)
6
7
8

def anagramMappings(self, A, B):

val_index = {}

ans = []

for i, n in enumerate(B):
val_index[n] = i

for n in A:
ans.append(val_index[n])

return ans

Listing 4.5. ‘Find the difference’

U W N~

def findTheDifference(self, s, t):
res = 0
for i in range(len(s)):
res = ord(t[il)res = ord(s[i])
return chr (res)
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Sequence-based code-clone detection During our observation on the result of graph-to-
sequence model, we noticed rare cases where part of the target sequence in testing dataset is
correctly predicted. In most of such cases, the model manages to predict the first word in the
sequence, especially when the first word is a verb, and has appeared in the training dataset.
The code fragments in Listing 4.4 and Listing 4.5 show a typical example of such cases. Code
fragment labeled with ‘Find anagram mappings’ appeared in the training dataset, while code
fragment labeled with ‘Find the difference’ appeared in testing dataset, and is predicted as ‘Find
anagram mappings’. Conservatively speaking, we can infer that our model indicates that the
two code fragments are similar by assigning them with the same function name. Further, we
notice that the two code fragments are similar in for loop followed by return statement, which
is exactly the behavior of ‘find’. We may even guess that our model manages to capture the
semantic meaning of natural language task.

Basically, such cases only happen with our model is trained for about 100 epochs, thus we
decide 100 epochs is when our model captures some regularity from the code fragments yet not
over-fitted to the training dataset. We checked the sequence prediction of our model when trained
for 100 epochs, and notice that it is not rare case that the model predicts the same sequence for
the clone pair from Python and Java. Though the predicted sequence is different to the sequence
label, predicting same sequence for similar code fragments from different programming languages
already matches our target of cross-language code-clone detection. We regard the code pairs
with same predicted sequences as detected clones, and the model reaches about 65.5% recall and
30.2% precision on cross-language code-clone detection.

Embedding based code-clone detection Then we evaluate our model by detecting cross-
language code-clones by comparing code embeddings. We used the FKuclidean distance between
code embeddings to measure the similarity of a code pair. Since our model is not directly
trained with a code-clone detection task, we evaluated the cross-language code-clone detection
performance on the entire dataset instead of part of it. According to our observation, the distance
of code embeddings between most clone pairs a less than 5, so we set the threshold to 5. However,
our model does not perform well in this evaluation. Though setting the threshold to 5 could
classify 25 of the 29 cross-language code-clone pairs, there are more non-clone pairs that have
closer distances than the clone pairs, leading to an extremely low precision on detected cross-

Table 4.1. Cross-language code-clone by comparing predicted sequence

Results
Clone pairs 29
Total code pairs 841(= 29?)
True positives (TP) 19
False positives (FP) 44
True negatives (TN) 768
False negatives (FN) 10
Recall(= TP/(TP + FN)) 65.5%

Precision(= TP/(TP + FP)) 30.2%
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Table 4.2. Cross-language code-clone by comparing code embeddings

Results

Clone pairs 29
Total code pairs 841(= 29?)

True positives (TP) 25
False positives (FP) 315
True negatives (TN) 497
False negatives (FN) 4

Recall(= TP/(TP + FN)) 86.2%

Precision(=TP/(TP + FP)) 7.35%

language code-clones. Meanwhile, there is not obvious improvement on precision when we lower
the threshold to make the model more strict. The detailed result is shown in Table 4.2.

Finally we compare the performance of our model with the work from Daniel et al. [8]. Our
model only showed slight improvement in precision of detected clones when judging clones by the
predicted sequences.

Table 4.3. General performance and comparison

models recall precision
Sequence-based  65.5%  30.2%
Embedding-based 76.3%  7.35%
Perez et al. 90% 19%

4.2 Code embedding generation

After the cross-language code-clone detection task, we then qualitatively evaluate the performance
of our model as a code embedding generator. There is no mathematical criteria for evaluating
the quality of embeddings, so the following results are mainly evaluated by manual observation.

4.2.1 Pre-trained node embedding

First we assess the effectiveness of our pre-training method for cross-language node embeddings.
All the embeddings presented below are generated by the online tool Embedding Projector [23].

Figure 4.2 is a general distribution of all nodes from the merged grammar graph of Python
and Java. We pick some typical node embeddings as examples. As highlighted in Figure 4.3, we
can observe that the ‘While’ node from Python ASTs and the ‘WhileStatement’ node from Java
ASTs are embedded closely. In fact, such node pairs should be assigned with exactly identical
embeddings if they share totally same neighbor set. But since we only merged part of the
nodes as anchor nodes, the rest un-shared neighbors finally lead to the distance between their
embeddings. We pick ‘BinOp’ node from Python ASTs and ‘BinaryOperation’ node from Java
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Figure 4.3. Embeddings for node ‘While’
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Figure 4.4. Embeddings for node ‘BinOp’
from Python and ‘BinaryOper-
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Figure 4.5. Embeddings for node ‘For’ from Python and ‘ForStatement’ from Java
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ASTs as the next example. According to the general embedding distribution shown in Figure
4.2, we notice the binary operator nodes (e.g. Greater than(GT), Less than (LE), etc.) focus on
the top right corner of the 2D latent space. As expected, their most common direct neighbors,
‘BinOp’ node and ‘BinaryOperation’ node, are embedded close to them. Since all these binary
operator nodes are set as anchor nodes, the ‘BinOp’ node and ‘BinaryOperation’ node share more
common neighbor than the ‘While’ node and ‘WhileStatement’ node, thus are embedded closer.
There are also exceptions. As shown in Figure 4.5, the ‘For’ node from Python ASTs and the
‘ForStatement’ from Java ASTs are not embedded as close as the previous examples. According
to our observation, these two nodes almost share no common neighbors in the merged grammar
graph, indicating that it might be more appropriate to merge them as anchor nodes to guide the
embedding of their neighbors.

It is worth mentioning that these node pairs are actually selected as anchor nodes in our other
experiments. We only separate them to generate this demonstration.

4.2.2 Code embeddings

In this section, we present a qualitative evaluation of our code embedding generation model.
Figure 4.6 shows a general distribution in a 2D latent space of the code embeddings generated with
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Figure 4.6. General distribution of code embeddings
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our model. From this general distribution we can already notice some cross-language code-clone
pairs that are embedded closely, e.g. ‘Hamming Distance’ and ‘Palindrome_Number’. Then
we take some typical code embeddings to demonstrate the effectiveness of our code embedding
model.

As shown in Figure 4.7, the code fragments written in Python and Java are embedded closely

sjava001_Two_Sum

+py001_Two_Sum

Figure 4.9. Code embedding for code fragment ‘Two_ Sum’
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on the top right corner of the latent space. However, considering that we modified the dataset so
that cross-language code-clone pairs share exactly same code structures, these code pairs are not
embedded close enough. Ideally, given an arbitrary code fragment from our dataset, its clone pair
should be encoded closer than any other code fragment, since there is no code fragment that is
more similar than the clone pair. This explains the low precision on detected clones of our model.
In the next example in Figure 4.8, we noticed that not only ‘Flood_ Fill’ from both Python and
Java are embedded close to each other, the code fragment ‘Flood_ Fill_II’ which contains another
solution for the flood fill problem, is also embedded in a close position. Such similarity in code
fragments is originally contained in the question name. Since the code embedding generating
process does not involve the RNN model, we can conclude that our GNN encoder managed to
capture similarity information from the AST during training. Finally, Figure 4.9 shows a failure
case. The clone pair are embedded to the opposite corner of the latent space.
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Chapter 5

Conclusion

5.1 Summary

In this work, we proposed a Graph Neural Network (GNN) based code embedding model for
cross-language code-clone detection. Specifically, we train our model with a graph (AST) to
sequence task instead of typical code-clone detection task. We dig information from the sequence
label with an RNN decoder, to guide the embedding process of the GNN encoder. In general, our
model follows a GNN-encoder-RNN-decoder structure, implemented with attention mechanism
to improve the performance.

One important feature is that it introduces the Graph Neural Network (GNN) model to the
cross-language code-clone detection task. On the one hand, many previous works on the AST-
based cross-language code-clone tasks lack an appropriate approach to deal with the tree structure
of an AST. Some of them manually defined AST comparison rules which is time consuming
and requires much professional knowledge, while others linearized the ASTs so that they can be
processed by conventional deep learning models, potentially breaking the hierarchical information.
In our work, we introduced the GNN models which is capable of directly processing ASTs, and
have a strong power of extracting structural information from graph (tree) structures.

On the other hand, though there has been attempts on applying GNN model to monolingual
code-clone detection task [11], their model faces two major problems. First, the Graph-Matching-
Network they introduced is implemented with a pair-wise attention mechanism, which boosts the
model’s capability of capturing minor differences. However, such design fails to generalize to
cross-language task, because the basic structures of the input ASTs are different. Second, their
model works in a pair-wised way of inputting a pair of code fragments and outputting a predicted
clone label, thus the code embedding generated by the GMN depends on the other input. Such
embedding cannot be used independently. While in our work, we first propose to generate
grammar graph from ASTs, then applies the DeepWalk model to the merged grammar graph to
generate node embeddings that cross the language boundary. Besides, we train our model with
natural language labels which potentially contains more complicated information than binary
clone labels.

In the evaluation stage, our results show that our model doesn’t work well on the task of cross-
language code-clone detection, yet it still achieved slight improvement on precision of detected
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clones with the help of a RNN decoder, compared to a previous work. As a code embedding model,
our qualitative evaluations show that both our node embedding model and code embedding model
achieved some result. They both managed to approximately embed the nodes and code fragments
into a latent space according to their social relationship or semantics. Most importantly, they
both managed to break the language boundary and embed node and code fragments from different
programming languages into the same latent space.

5.2 Threats of validity

There are many details in the structure of our model, that is not carefully mentioned in the thesis
but may have influence on our presented result, we list them as follows.

dataset Though we are training our model with a sequence prediction task, the cross-language
dataset is still a typical code-clone dataset by nature. The model is capable of capturing same
regularities for cross-language code fragments, because the code-to-sequence dataset is symmetric
for the two target languages. In other words. the model probably would not work if the code-
to-sequence datasets for the two target languages are irrelevant. Though we may not be able to
find cross-language code-to-sequence dataset that possesses same regularities, but we can always
label a cross-language code-clone dataset with sequence labels, so that our model can still work.
Anyway, we believe a complicated label with more information is always better than the binary
clone label.

Model details For many detailed settings of our model, for example the selection of aggregation
function or read-out function, we basically followed the description from other related works.
Same for the choice of hyper parameters, we chose them based on observation and experience.
Due to the limit of time, we did not conduct sufficient experiments to choose the best combination
of the model settings.

Performance comparison The results from Daniel et al. was picked directly from their pub-
lished paper. We did not re-implement their model, nor did we run their code in our environment,
due to limit of time.

5.3 Future work

Currently our code embedding model does not perform well on the task of cross-language code-
clone detection. But we still believe in the potential of GNN models extracting information from
ASTs while crossing the language boundary. There are still plenty of space of improvement for
our model.

First we still want to stress the importance of a proper dataset. Though our dataset has
already been modified to fit our model, it is still too small and limited. Besides, the information
contained in the natural language labels is too abstract, increasing the learning difficulty of
our model. Thus on the one hand, we would further look for a better dataset that suits our
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expectation. On the other hand, we would test our model on more general datasets to test its
ability of generalization.

Secondly, as we mentioned in Section 4.1, our model has the potential of capturing the rela-
tionship between code behavior and natural language expressions. Such feature has not been yet
rigorously proved. Further exploring the model’s potential in such feature may bring huge leaps
on the embedding performance of our model.

Finally, as we observed in the evaluation stage, the code-clone pairs from different program-
ming languages are not correctly embedded as we expect. This indicates that our model does not
totally over come the language boundary. Apart from taking more consideration on pre-training
node embeddings, we should also improve our model structure for the cross language task. For
example, a straightforward idea would be implementing independent GNN models to deal with
ASTs from different languages, while setting appropriate constraints.
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